skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fan, Neng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The actual failure times of individual components are usually unavailable in many applications. Instead, only aggregate failure-time data are collected by actual users, due to technical and/or economic reasons. When dealing with such data for reliability estimation, practitioners often face the challenges of selecting the underlying failure-time distributions and the corresponding statistical inference methods. So far, only the exponential, normal, gamma and inverse Gaussian distributions have been used in analyzing aggregate failure-time data, due to these distributions having closed-form expressions for such data. However, the limited choices of probability distributions cannot satisfy extensive needs in a variety of engineering applications. PHase-type (PH) distributions are robust and flexible in modeling failure-time data, as they can mimic a large collection of probability distributions of non-negative random variables arbitrarily closely by adjusting the model structures. In this article, PH distributions are utilized, for the first time, in reliability estimation based on aggregate failure-time data. A Maximum Likelihood Estimation (MLE) method and a Bayesian alternative are developed. For the MLE method, an Expectation-Maximization algorithm is developed for parameter estimation, and the corresponding Fisher information is used to construct the confidence intervals for the quantities of interest. For the Bayesian method, a procedure for performing point and interval estimation is also introduced. Numerical examples show that the proposed PH-based reliability estimation methods are quite flexible and alleviate the burden of selecting a probability distribution when the underlying failure-time distribution is general or even unknown. 
    more » « less
  2. The length-of-stay (LOS) is an important quality metric in health care, and the use of phase-type (PH) distribution provides a flexible method for modeling LOS. In this paper, we model the patient flow information collected in a hospital for patients of distinct diseases, including headache, liveborn infant, alcohol abuse, acute upper respiratory infection, and secondary cataract. Based on the results obtained from fitting Coxian PH distributions to the LOS data, the patients can be divided into different groups. By analyzing each group to find out their common characteristics, the corresponding readmission rate and other useful information can be evaluated. Furthermore, a comparison of patterns for each disease is analyzed. We conclude that it is important to offering better service and avoiding waste of sources, by the analysis of the relations between groups and readmission. In addition, comparing the patterns within distinct diseases, a better decision for assigning resources and improving the insurance policy can be made. 
    more » « less